Abstract

Abstract This paper explores the application of emerging machine learning methods from image super resolution (SR) to the task of statistical downscaling. We specifically focus on convolutional neural network–based generative adversarial networks (GANs). Our GANs are conditioned on low-resolution (LR) inputs to generate high-resolution (HR) surface winds emulating Weather Research and Forecasting (WRF) Model simulations over North America. Unlike traditional SR models, where LR inputs are idealized coarsened versions of the HR images, WRF emulation involves using nonidealized LR and HR pairs, resulting in shared-scale mismatches due to internal variability. Our study builds upon current SR-based statistical downscaling by experimenting with a novel frequency-separation (FS) approach from the computer vision field. To assess the skill of SR models, we carefully select evaluation metrics and focus on performance measures based on spatial power spectra. Our analyses reveal how GAN configurations influence spatial structures in the generated fields, particularly biases in spatial variability spectra. Using power spectra to evaluate the FS experiments reveals that successful applications of FS in computer vision do not translate to climate fields. However, the FS experiments demonstrate the sensitivity of power spectra to a commonly used GAN-based SR objective function, which helps interpret and understand its role in determining spatial structures. This result motivates the development of a novel partial frequency-separation scheme as a promising configuration option. We also quantify the influence on GAN performance of nonidealized LR fields resulting from internal variability. Furthermore, we conduct a spectrum-based feature-importance experiment, allowing us to explore the dependence of the spatial structure of generated fields on different physically relevant LR covariates. Significance Statement We use artificial intelligence algorithms to mimic wind patterns from high-resolution climate models, offering a faster alternative to running these models directly. Unlike many similar approaches, we use datasets that acknowledge the essentially stochastic nature of the downscaling problem. Drawing inspiration from computer vision studies, we design several experiments to explore how different configurations impact our results. We find evaluation methods based on spatial frequencies in the climate fields to be quite effective at understanding how algorithms behave. Our results provide valuable insights into and interpretations of the methods for future research in this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.