Abstract
Compliant actuators enabling low-power stiffness adaptation are missing ingredients and key enablers of next generation robotic systems. One of the key components of these actuators is the mechanism implementing stiffness adaptation that requires sophisticated control and nontrivial mechanical design. However, despite recent advances in controlling these systems, their design remains experience based and not well understood. In this paper, we present an optimization-based computational framework for the design of intrinsically low-power compliant variable stiffness mechanisms. The core ingredient of this framework is the mathematical formulation of the design problem—provided by a constrained nonlinear parameter optimization—which is computationally solved here to identify optimal variable stiffness designs. We show the basic capability of this formulation in finding parameters for variable stiffness mechanisms that require the least power by design. Further, we demonstrate the generality of this method in cross-comparing mechanisms with different kinematic topology to identify the one that requires the least power by design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.