Abstract

We demonstrate an optical detection and decoding strategy to increase the information rate and spectral efficiency of free-space laser communication links affected by turbulence by means of dense orbital angular momentum (OAM) modulation. Using three candidate receiver architectures-based on a Shack-Hartmann sensor, a Mode Sorter, and a complex conjugate projection scheme as a base case-we demonstrate an algorithmic classification system based on the received OAM spectra produced by these architectures. This classification scheme allows low-error-rate data transmission in turbulence using 16-OAM, 32-OAM, and 64-OAM symbol constellations, with OAM states between -20 and 20. We evaluate and compare their performance under weak to strong atmospheric turbulence conditions using an accuracy metric and confusion matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call