Abstract

For a simple, undirected, connected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called a total Roman {3}-dominating function (TR3DF) of [Formula: see text] with weight [Formula: see text]: (C1) For every vertex [Formula: see text] if [Formula: see text], then [Formula: see text] has [Formula: see text] ([Formula: see text]) neighbors such that whose sum is at least 3, and if [Formula: see text], then [Formula: see text] has [Formula: see text] ([Formula: see text]) neighbors such that whose sum is at least 2. (C2) The subgraph induced by the set of vertices labeled one, two or three has no isolated vertices. For a graph [Formula: see text], the smallest possible weight of a TR3DF of [Formula: see text] denoted [Formula: see text] is known as the total Roman[Formula: see text]-domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum total Roman {3}-domination problem (MTR3DP). In this paper, we show that the problem of deciding if [Formula: see text] has a TR3DF of weight at most [Formula: see text] for chordal graphs is NP-complete. We also show that MTR3DP is polynomial time solvable for bounded treewidth graphs, chain graphs and threshold graphs. We design a [Formula: see text]-approximation algorithm for the MTR3DP and show that the same cannot have [Formula: see text] ratio approximation algorithm for any [Formula: see text] unless NP [Formula: see text]. Next, we show that MTR3DP is APX-complete for graphs with [Formula: see text]. We also show that the domination and total Roman {3}-domination problems are not equivalent in computational complexity aspects. Finally, we present an integer linear programming formulation for MTR3DP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.