Abstract

Proportional symbol maps visualize numerical data associated with point locations by placing a scaled symbol—typically an opaque disk or square—at the corresponding point on a map. The area of each symbol is proportional to the numerical value associated with its location. Every visually meaningful proportional symbol map will contain at least some overlapping symbols. These need to be drawn in such a way that the user can still judge their relative sizes accurately. We identify two types of suitable drawings: physically realizable drawings and stacking drawings. For these we study the following two problems: Max-Min—maximize the minimum visible boundary length of each symbol—and Max-Total—maximize the total visible boundary length over all symbols. We show that both problems are NP-hard for physically realizable drawings. Max-Min can be solved in O(n 2log n) time for stacking drawings, which can be improved to O(nlog n) time when the input has certain properties. We also implemented several methods to compute stacking drawings: our solution to the Max-Min problem performs best on the data sets considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.