Abstract

Accurate and rapid evaluation of radar signature for alternative aircraft/ store configurations would be of substantial benefit in the evolution of integrated designs that meet RCS requirements across the threat spectrum. Finite-volume time domain methods offer the possibility of modeling the whole aircraft, including penetrable regions and stores, at longer wavelengths on today’s supercomputers and at typical airborne radar wavelengths on the teraflop computers of tomorrow. To realize this potential, practical means must be developed for the rapid generation of grids on and around the aircraft, and numerical algorithms that maintain high order accuracy on such grids must be constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.