Abstract

We present two methods for translating nonlinear hybrid systems into linear hybrid automata. Properties of the nonlinear systems can then be inferred from the automatic analysis of the translated linear hybrid automata. The first method, called clock translation, replaces constraints on nonlinear variables by constraints on clock variables. The second method, called linear phase-portrait approximation, conservatively overapproximates the phase portrait of a hybrid automaton using piecewise-constant polyhedral differential inclusions. Both methods are sound for safety properties. We illustrate both methods by using HYTECH, a symbolic model checker for linear hybrid automata, to automatically check properties of a nonlinear temperature controller and of a predator-prey ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.