Abstract
We present SQUIC , a fast and scalable package for sparse precision matrix estimation. The algorithm employs a second-order method to solve the \(\ell_{1}\) -regularized maximum likelihood problem, utilizing highly optimized linear algebra subroutines. In comparative tests using synthetic datasets, we demonstrate that SQUIC not only scales to datasets of up to a million random variables but also consistently delivers run times that are significantly faster than other well-established sparse precision matrix estimation packages. Furthermore, we showcase the application of the introduced package in classifying microarray gene expressions. We demonstrate that by utilizing a matrix form of the tuning parameter (also known as the regularization parameter), SQUIC can effectively incorporate prior information into the estimation procedure, resulting in improved application results with minimal computational overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.