Abstract

Mobile robots have broad application prospects in military, industrial, agricultural, commercial, transportation, and logistics fields. The core problem of mobile robot lies in the autonomous navigation ability of mobile robot. Inertial navigation system based on MEMS sensor is one of the research hotspots in the field of inertial navigation in recent years and one of the main research directions in the future. Aiming at the positioning of the mobile robot, this paper adopts the magnetometer assisted inertial navigation system, the navigation system consisting of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer. The heading is calculated with three sensors, the velocity error is compensated, and calculate the position. In this paper, an Extended Kalman Filter for mobile robot navigation system is proposed to improve the position accuracy of the navigation system. Experiments are carried out to verify and analyze the filter with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.