Abstract
AbstractThe algorithm quasi‐optimal (AQ) is a powerful machine learning methodology aimed at learning symbolic decision rules from a set of examples and counterexamples. It was first proposed in the late 1960s to solve the Boolean function satisfiability problem and further refined over the following decade to solve the general covering problem. In its newest implementations, it is a powerful but yet little explored methodology for symbolic machine learning classification. It has been applied to solve several problems from different domains, including the generation of individuals within an evolutionary computation framework. The current article introduces the main concepts of the AQ methodology and describes AQ for source detection(AQ4SD), a tailored implementation of the AQ methodology to solve the problem of finding the sources of atmospheric releases using distributed sensor measurements. The AQ4SD program is tested to find the sources of all the releases of the prairie grass field experiment. Copyright © 2010 John Wiley & Sons, Inc.This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Knowledge Discovery Statistical Learning and Exploratory Methods of the Data Sciences > Rule-Based Mining
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.