Abstract
The paper discusses the algorithm of spacecraft orientation and docking thrusters control for simultaneous spatial and angular motion. The solution of control velocity formation problem and the problem of required engines configuration determination along with the optimization of control vector execution accuracy are considered. The formation of control velocity is carried out using a phase plane with switching lines and a zone of inactivity. The calculation of thrusters working duration time is based on the method of least squares with non-negative resulting solution vector and additional boundary conditions. In the paper, the necessary control parameters were chosen to ensure the necessary accuracy of spacecraft stabilization. To demonstrate the developed algorithm, mathematical modelling of various considered spacecraft's orbital flight stages was executed, including damping of initial angular velocities, spatial motion, and stabilization under the influence of continuous perturbations. The simulation took into account the disturbing moments acting on the spacecraft, thrusters mounting errors and the characteristics of the angular velocity meter. The elastic characteristics of the structure were not taken into account. The results of mathematical modelling showed that the proposed algorithm coped well with the task, and was able to ensure the movement of the spacecraft center of masses in a given direction and simultaneous angular stabilization with required accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Herald of the Bauman Moscow State Technical University. Series Instrument Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.