Abstract
Abstract : In this paper, we develop a method for solving a large class of non-convex Hamilton-Jacobi partial differential equations (HJ PDE). The method yields decoupled subproblems, which can be solved in an embarrassingly parallel fashion. The complexity of the resulting algorithm is polynomial in the problem dimension; hence, it overcomes the curse of dimensionality [1, 2]. We extend previous work in[6] and apply the Hopf formula to solve HJ PDE involving non-convex Hamiltonians. We propose an ADMM approach for finding the minimizer associated with the Hopf formula. Some explicit formulae of proximal maps, as well as newly-defined stretch operators, are used in the numerical solutions of ADMM subproblems. Our approach is expected to have wide applications in continuous dynamic games, control theory problems, and elsewhere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.