Abstract

Monitoring of structures to identify types of damages that occur under loading is essential in practical applications of civil infrastructure. In this paper, we detect and visualize damage based on several non-destructive testing (NDT) methods. A machine learning (ML) approach based on the Support Vector Machine (SVM) method is developed to prevent misdirection of the event interpretation of what is happening in the material. The objective is to identify cracks in the early stages, to reduce the risk of failure in structures. Theoretical and experimental analyses are derived by computing the performance indicators on the smart aggregate (SA)-based sensor data for concrete and reinforced-concrete (RC) beams. Validity assessment of the proposed indices was addressed through a comparative analysis with traditional SVM. The developed ML algorithms are shown to recognize cracks with a higher accuracy than the traditional SVM. Additionally, we propose different algorithms for microwave- or millimeter-wave imaging of steel plates, composite materials, and metal plates, to identify and visualize cracks. The proposed algorithm for steel plates is based on the gradient magnitude in four directions of an image, and is followed by the edge detection technique. Three algorithms were proposed for each of composite materials and metal plates, and are based on 2D fast Fourier transform (FFT) and hybrid fuzzy c-mean techniques, respectively. The proposed algorithms were able to recognize and visualize the cracking incurred in the structure more efficiently than the traditional techniques. The reported results are expected to be beneficial for NDT-based applications, particularly in civil engineering.

Highlights

  • Structural health monitoring (SHM) using non-destructive inspection (NDI) has been known as one of the technologies in which the material properties can be evaluated without the occurrence of any damages A

  • NDI and Non-destructive Testing (NDT) methods rely on the employment of electromagnetic waves and intrinsic characteristic attributes of materials to test samples

  • Many researchers have concentrated on the automated detection of defects [2,3,4,5,6,7,8,9,10,11,12], but few studies have been done into the comprehensive or well-ordered data analysis of systems, and this is the motivation for the present research

Read more

Summary

Introduction

Structural health monitoring (SHM) using non-destructive inspection (NDI) has been known as one of the technologies in which the material properties can be evaluated without the occurrence of any damages A. NDI and Non-destructive Testing (NDT) methods rely on the employment of electromagnetic waves and intrinsic characteristic attributes of materials to test samples. One of the most commonly known NDI/NDT techniques is ultrasonic inspection, which engages transducers to generate mechanical oscillations through the inspected material, and receives the reflected ultrasonic waves from the material [1]. The analysis of this data has the potential to detect structural damage in the early stages, by minimizing errors, and reducing the asset management costs. Many researchers have concentrated on the automated detection of defects [2,3,4,5,6,7,8,9,10,11,12], but few studies have been done into the comprehensive or well-ordered data analysis of systems, and this is the motivation for the present research

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call