Abstract
Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Surface Topography: Metrology and Properties
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.