Abstract

A modified Code Noise and Multipath (CNMP) algorithm is presented for dual-frequency differential GPS precision approach and landing. Pseudorange noise and multipath are exchanged for reducible biases in both reference station and aircraft ranging measurements. The second frequency is used only to correct the code-minus-carrier observable. Corrected pseudorange measurements are combined using a single-frequency carrier phase position domain smoothing (CPDS) algorithm. Flight test vertical and horizontal navigation system error is reduced from 0.80 m to 0.32 m and from 0.41 m to 0.33 m, respectively, as compared to Local Area Augmentation System single-frequency processing. For six included 150-s precision approaches, 95% error drops from 0.56 m to 0.26 m vertically and 0.28 m to 0.14 m horizontally. Composite protection levels (PLs) using CNMP-derived quantities are much smaller than modified LAAS PLs. Mean PL values are reduced from 5.90 m to 2.60 m vertically and from 3.24 m to 1.38 m horizontally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.