Abstract

Multi-degree splines are smooth piecewise-polynomial functions where the pieces can have different degrees. We describe a simple algorithmic construction of a set of basis functions for the space of multi-degree splines with similar properties to standard B-splines. These basis functions are called multi-degree B-splines (or MDB-splines ). The construction relies on an extraction operator that represents all MDB-splines as linear combinations of local B-splines of different degrees. This enables the use of existing efficient algorithms for B-spline evaluations and refinements in the context of multi-degree splines. A M ATLAB implementation is provided to illustrate the computation and use of MDB-splines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.