Abstract

Transmission eigenvalue problem has important applications in inverse scattering. Since the problem is non-self-adjoint, the computation of transmission eigenvalues needs special treatment. Based on a fourth-order reformulation of the transmission eigenvalue problem, a mixed finite element method is applied. The method has two major advantages: 1) the formulation leads to a generalized eigenvalue problem naturally without the need to invert a related linear system, and 2) the nonphysical zero transmission eigenvalue, which has an infinitely dimensional eigenspace, is eliminated. To solve the resulting non-Hermitian eigenvalue problem, an iterative algorithm using restarted Arnoldi method is proposed. To make the computation efficient, the search interval is decided using a Faber-Krahn type inequality for transmission eignevalues and the interval is updated at each iteration. The algorithm is implemented using Matlab. The code can be easily used in the qualitative methods in inverse scattering and modified to compute transmission eigenvalues for other models such as elasticity problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call