Abstract

We present a new algorithm for solving the dense linear (sum) assignment problem and an efficient, parallel implementation that is based on the successive shortest path algorithm. More specifically, we introduce the well-known epsilon scaling approach used in the Auction algorithm to approximate the dual variables of the successive shortest path algorithm prior to solving the assignment problem to limit the complexity of the path search. This improves the runtime by several orders of magnitude for hard-to-solve real-world problems, making the runtime virtually independent of how hard the assignment is to find. In addition, our approach allows for using accelerators and/or external compute resources to calculate individual rows of the cost matrix. This enables us to solve problems that are larger than what has been reported in the past, including the ability to efficiently solve problems whose cost matrix exceeds the available systems memory. To our knowledge, this is the first implementation that is able to solve problems with more than one trillion arcs in less than 100 hours on a single machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.