Abstract
A Matlab class for multicomplex numbers was developed with particular attention paid to the robust and accurate handling of small imaginary components. This is primarily to allow the class to be used to obtain n -order derivative information using the multicomplex step method for, among other applications, gradient-based optimization and optimum control problems. The algebra of multicomplex numbers is described, as is its accurate computational implementation, considering small term approximations and the identification of principal values. The implementation of the method in Matlab is studied, and a class definition is constructed. This new class definition enables Matlab to handle n -order multicomplex numbers and perform arithmetic functions. It was found that with this method, the step size could be arbitrarily decreased toward machine precision. Use of the method to obtain up to the seventh derivative of functions is presented, as is timing data to demonstrate the efficiency of the class implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.