Abstract
The increasing global demand for tellurium, driven by its critical role in alloys, photovoltaic devices, and electronics, has raised concerns about its environmental pollution and neurotoxicity. In response, the potential of alginic acid (AA), a renewable, low-cost, and sustainable biopolymer, was explored for the biosynthesis of ultra-small silver nanoparticles (AgNPs) and their application in the detection of tellurium (Te(IV)). The effect of key synthesis parameters on desired physicochemical properties and yield of AgNPs was established to ensure high specificity and sensitivity towards Te(IV). The purified AgNPs with AA surface ligands were utilized to demonstrate a ratiometric absorbance sensor that exhibits excellent linearity and nanomolar-level affinity. This approach achieved a high correlation coefficient of ∼ 0.982, with a low detection limit of about 22 nM. Further investigations into the effect of pH, ionic strength, and organic molecules were conducted to elucidate detection performance and molecular understanding. The detection mechanism relies on the coordination between Te(IV) ions and the carboxylate groups of AA, which initiates aggregation-induced plasmon coupling in adjacent AgNPs. The capability of this analytical method to monitor Te(IV) in real-world water samples features its rapidity, user-friendliness, and suitability for point-of-care monitoring, making it a promising alternative to more complex techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.