Abstract
AbstractA lipase [triacylglycerol ester hydrolase (EC 3.1.1.3)] was encapsulated in sodium alginate (AlgNa)/poly(vinyl alcohol) (PVA) microspheres. Spherical AlgNa/PVA beads were prepared by the ionotropic gelation of an AlgNa/PVA blend in the presence of calcium tetraborate (CaB4O7). The particles were spherical and had an average diameter of 400 μm. The microspheres were studied with differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and water transport by the equilibrium degree of swelling. The elevation of the glass‐transition temperature of the microspheres indicated specific crosslinking reactions of the component polymers (AlgNa/PVA). FTIR spectra showed no evidence of a strong chemical interaction changing the nature of the functional groups of both AlgNa and PVA in the AlgNa/PVA blends. The water diffusion coefficients increased with increasing PVA content in the microspheres, indicating a decrease in the resistance to mass transfer through the AlgNa/PVA microsphere wall. The AlgNa/PVA microspheres were characterized by the Michaelis constant (KM) and the maximum reaction velocity (Vmax), which were determined for both free and immobilized lipases. The enzyme affinity for the substrate (KM/Vmax) remained quite good after immobilization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1553–1560, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.