Abstract

Multifunctional dressing materials are highly required to combat multidrug resistant bacteria in wound infections. Here an alginate-based aerogel dressing is reported that combines photothermal bactericidal activity, hemostatic property, and free radical scavenging for skin wound disinfection and accelerated wound healing. The aerogel dressing is facilely constructed by immersing a clean nail (Fe) in a mixed solution of sodium alginate (Alg) and tannic acid (TA), followed by freezing, solvent replacement, and air drying. The Alg matrix plays an essential role in modulating the continuous assembly process between TA and Fe to allow the homogenous distribution of TA-Fe metal-phenolic networks (MPN) in the resulting composite, without forming aggregates. The photothermally responsive Nail-TA/Alg aerogel dressing is successfully applied in a murine skin wound model infected with Methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile strategy to integrate MPN with the hydrogel/aerogel matrix through in situ chemistry, which is promising for developing multifunctional biomaterials and biomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call