Abstract
Cutaneous minoxidil (MXD) formulations were developed with the intent to reduce the side effects of the cosolvents propylene glycol and ethanol, frequently used in commercial MXD solutions. Completely aqueous alginate-based hydrogels were investigated and MXD aqueous solubility was improved using inclusion complexes with hydroxypropyl-β-cyclodextrin (HP-β-CD) at 2 different molar substitution degree (MS), namely 0.65 and 0.85. HP-β-CD MS 0.65 was selected for its improved solubilizing ability toward MXD. At concentration of 39% w/v, this cyclodextrin increased the intrinsic aqueous solubility of MXD of about 22-fold. The calculated complexation constant was 2309 ± 20 M−1, and the inclusion process was spontaneous and enthalpically driven. Nuclear magnetic resonance studies (Job plot, 1H, 2D correlations spectroscopy, nuclear overhauser effect spectroscopy, and rotating-frame overhauser enhancement spectroscopy) confirmed the stoichiometry 1:1 between MXD and HP-β-CD providing information about the exact geometry of the inclusion complex. Rheological and in vitro release studies performed on the formulation loaded with MXD 3.5% w/w proved that the inclusion complex increased the viscosity of the hydrogel modulating the release of the free drug. Furthermore, the hydrogel formulation facilitate MXD to permeate into the skin and did not damage epidermis, suggesting that these completely aqueous MXD delivery systems can be proposed as alternative formulations to commercial solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.