Abstract

With the help of a simple Lie algebra, an isospectral Lax pair, whose feature presents decomposition of element (1, 2) into a linear combination in the temporal Lax matrix, is introduced for which a new integrable hierarchy of evolution equations is obtained, whose Hamiltonian structure is also derived from the trace identity in which contains a constant γ to be determined. In the paper, we obtain a general formula for computing the constant γ. The reduced equations of the obtained hierarchy are the generalized nonlinear heat equation containing three-potential functions, the mKdV equation and a generalized linear KdV equation. The algebro-geometric solutions (also called finite band solutions) of the generalized nonlinear heat equation are obtained by the use of theory on algebraic curves. Finally, two kinds of gauge transformations of the spatial isospectral problem are produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.