Abstract

Two new 2 + 1 dimensional nonlinear evolution equations are presented. The 2 + 1 dimensional equations closely relate with a hierarchy of 1 + 1 dimensional soliton equations. Through nonlinearizing of Lax pairs, the 1 + 1 dimensional evolution equations are decomposed to the finite dimensional integrable Hamiltonian systems. Finally by applying Riemann–Jacobi inversion technique, the algebro-geometric solutions of the 1 + 1 dimensional soliton equation hierarchy as well as two 2 + 1 dimensional equations are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.