Abstract
The ( 2 + 1 )-dimensional Lax integrable equation is decomposed into solvable ordinary differential equations with the help of known ( 1 + 1 )-dimensional soliton equations associated with the Ablowitz-Kaup-Newell-Segur soliton hierarchy. Then, based on the finite-order expansion of the Lax matrix, a hyperelliptic Riemann surface and Abel-Jacobi coordinates are introduced to straighten out the associated flows, from which the algebro-geometric solutions of the ( 2 + 1 )-dimensional integrable equation are proposed by means of the Riemann θ functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.