Abstract

Given a proper holomorphic mapping \(g:\varOmega \subseteq {\mathbb {C}}^{n}\longrightarrow \varOmega ' \subseteq {\mathbb {C}}^{n}\) and an algebra of holomorphic functions \({\mathcal {B}}\) (e.g. \({\mathscr {P}}(K)\) where \(K\subset \varOmega \) is a compact set, \({\mathcal {H}}(U)\), A(U) or \({\mathcal {H}}^{\infty }(U)\) where U is an open and bounded set with \(\overline{U}\subset \varOmega \)), we study the subalgebra \({\mathcal {B}}_{g}\) of all functions compatible with the equivalence relation defined by the proper mapping g. We provide alternative representations of these algebras and describe the fibers in their spectra. Among other examples we relate the algebras of functions that are invariant under permutations and the algebras of functions defined on the symmetrized polydisk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.