Abstract

We prove that algebras of binary relations whose similarity type includes intersection, composition, converse negation and the identity constant form a non-finitely axiomatizable quasivariety and that the equational theory is not finitely based. We apply this result to the problem of the completeness of relevant logic with respect to binary relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.