Abstract
In a vertex algebra setting, we consider non-local screening operators associated to the basis of any non-integral lattice. We have previously shown that, under certain restrictions, these screening operators satisfy the relations of a quantum shuffle algebra or Nichols algebra associated to a diagonal braiding, which encodes the non-locality and non-integrality. In the present article, we take all finite-dimensional diagonal Nichols algebras, as classified by Heckenberger, and find all lattice realizations of the braiding that are compatible with reflections. Usually, the realizations are unique or come as one- or two-parameter families. Examples include realizations of Lie superalgebras. We then study the associated algebra of screenings with improved methods. Typically, for positive definite lattices we obtain the Nichols algebra, such as the positive part of the quantum group, and for negative definite lattices we obtain a certain extension of the Nichols algebra generalizing the infinite quantum group with a large center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.