Abstract

Surface effects are critical to the predictive simulation of electromagnetics as current tends to concentrate near material interfaces. There are two principal difficulties in the accurate representation of these effects in discrete models. First, many applications of interest operate at large deformations, where body-fitted meshes are impractical. Second, physics-compatible discretizations of the governing equations require curl-conforming edge elements, for which no practical alternatives to body-fitted meshes exist. The main purpose of this paper is to develop such an alternative that avoids remeshing the problem.Our approach uses the existing edge element basis to dynamically construct an interface-conforming basis. We show that in the case of triangular grids in two dimensions, our approach generates a basis that spans the same space as edge elements on an interface-fitted mesh. We also demonstrate the efficacy of the approach computationally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.