Abstract
Abstract Every semifield of non-zero characteristic is either a field of prime characteristic or a semifield of characteristic 1. Semifields of characteristic 1 are equivalent to abelian lattice-ordered groups. It is proved that such a semifield A is algebraically closed if and only if the pure equations xn = a and certain quadratic equations are solvable in A. Using a sheaf representation for z-projectable abelian l-groups on the co-Zariski space of minimal primes, a sheaf-theoretic characterization of algebraic closedness in characteristic 1 is obtained. Concerning the solvability of quadratic equations, the criterion consists in a topological condition for the base space. The results are built upon an analysis of rational functions in characteristic 1. While polynomials satisfy the “fundamental theorem of algebra”, the multiplicative structure of rational functions is determined by means of “divisors”, extracted from the additive structure of A modulo parallelogram identities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.