Abstract

We show that every affine or projective algebraic variety defined over the field of real or complex numbers is homeomorphic to a variety defined over the field of algebraic numbers. We construct such a homeomorphism by carefully choosing a small deformation of the coefficients of the original equations. This deformation preserves all polynomial relations over \mathbb Q satisfied by these coefficients and is equisingular in the sense of Zariski. Moreover we construct an algorithm, that, given a system of equations defining a variety V , produces a system of equations with coefficients in \bar{\mathbb Q} of a variety homeomorphic to V .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.