Abstract
Given an analytic function of one complex variable f, we investigate the arithmetic nature of the values of f at algebraic points. A typical question is whether f( α) is a transcendental number for each algebraic number α. Since there exist transcendental entire functions f such that f (t)(α)∈ Q[α] for any t⩾0 and any algebraic number α, one needs to restrict the situation by adding hypotheses, either on the functions, or on the points, or else on the set of values. Among the topics we discuss are recent results due to Andrea Surroca on the number of algebraic points where a transcendental analytic function takes algebraic values, new transcendence criteria by Daniel Delbos concerning entire functions of one or several complex variables, and Diophantine properties of special values of polylogarithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.