Abstract

Sequences of polynomials, verifying the (▭), nowadays called Appell polynomials, have been well studied because of their remarkable applications not only in different branches of mathematics ([2], [3]) but also in theoretical physics and chemistry ([4], [5]). In 1936 an initial bibliography was provided by Davis (p. 25[6]). In 1939 Sheffer ([7]) introduced a new class of polynomials which extends the class of Appell polynomials; he called these polynomials of type zero, but nowadays they are called Sheffer polynomials. Sheffer also noticed the sim‐ ilarities between Appell polynomials and the umbral calculus, introduced in the second half of the 19th century with the work of such mathematicians as Sylvester, Cayley and Blissard (for examples, see [8]). The Sheffer theory is mainly based on formal power series. In 1941 Steffensen ([9]) published a theory on Sheffer polynomials based on formal power series too. However, these theories were not suitable as they did not provide sufficient computational tools. Afterwards Mullin, Roman and Rota ([10], [11], [12]), using operators method, gave a beautiful theory of umbral calculus, including Sheffer polynomials. Recently, Di Bucchianico and Loeb ([13]) summarized and documented more than five hundred old and new findings related to Appell polynomial sequences. In last years attention has centered on finding a

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call