Abstract

Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call