Abstract

Path-independent (PI) quantum control has recently been proposed to integrate quantum error correction and quantum control [Phys. Rev. Lett. 125, 110503 (2020)], achieving fault-tolerant quantum gates against ancilla errors. Here we reveal the underlying algebraic structure of PI quantum control. The PI Hamiltonians and propagators turn out to lie in an algebra isomorphic to the ordinary matrix algebra, which we call the PI matrix algebra. The PI matrix algebra, defined on the Hilbert space of a composite system (including an ancilla system and a central system), is isomorphic to the matrix algebra defined on the Hilbert space of the ancilla system. By extending the PI matrix algebra to the Hilbert-Schmidt space of the composite system, we provide an exact and unifying condition for PI quantum control against ancilla noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.