Abstract
This paper develops the Mobius inversion formula for the Gaussian integers and Eisenstein's integers, and gives two applications. The first application is to the two-dimensional arithmetic Fourier transform (AFT), which is suitable for parallel processing. The second application is to two-dimensional inverse lattice problems, and is illustrated with the recovery of interatomic potentials from the cohesive energy for monolayer graphite. The paper demonstrates the potential application in the physical science of integral domains other than the standard integers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.