Abstract

For any rank $2$ Drinfeld module $\rho$ defined over an algebraic function field, we consider its period matrix $P_{\rho}$, which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field ${\Bbb F}_q$ is odd and that $\rho$ does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of $P_{\rho}$ over ${\Bbb F}_q(\theta)$ is $4$. As a consequence, we show also the algebraic independence of Drinfeld logarithms of algebraic functions which are linearly independent over ${\Bbb F}_q(\theta)$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.