Abstract

Computing the intersection of parametric and algebraic curves and surfaces is a fundamental problem in computer graphics and geometric modeling. This problem has been extensively studied in the literature and different techniques based on subdivision, interval analysis and algebraic formulation are known. For low degree curves and surfaces algebraic methods are considered to be the fastest, whereas techniques based on subdivision and Bézier clipping perform better for higher degree intersections. In this paper, we introduce a new technique of algebraic pruning based on the algebraic approaches and eigenvalue formulation of the problem. The resulting algorithm corresponds to computing only selected eigenvalues in the domain of intersection. This is based on matrix formulation of the intersection problem, power iterations and geometric properties of Bézier curves and surfaces. The algorithm prunes the domain and converges to the solutions rapidly. It has been applied to intersection of parametric and algebraic curves, ray tracing and curve-surface intersections. The resulting algorithm compares favorably with earlier methods in terms of performance and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.