Abstract

I establish a translation invariance property of the Blackwell order over experiments, show that garbling experiments bring them together, and use these facts to define a cardinal measure of informativeness. Experiment $A$ is inf-norm more informative (INMI) than experiment $B$ if the infinity norm of the difference between a perfectly informative structure and $A$ is less than the corresponding difference for $B$. The better experiment is closer to the fully revealing experiment; distance from the identity matrix is interpreted as a measure of informativeness. This measure coincides with Blackwell's order whenever possible, is complete, order invariant, and prior-independent, making it an attractive and computationally simple extension of the Blackwell order to economic contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.