Abstract
Most computation costs in magnetic finite-element analyses are consumed solving large-scale linear systems of equations; therefore, the development of fast linear solvers would be effective to reduce the computation time. This research is aimed to develop an efficient algebraic multigrid (AMG) preconditioner for three-dimensional (3-D) magnetic finite-element analyses utilizing nodal and edge elements. A new AMG preconditioner for eddy-current analyses is proposed, which separately treats nodal elements and edge elements in the construction of the coarse grids. Numerical results demonstrated the performances of AMG solvers in magnetostatic analyses and eddy-current analyses. The proposed AMG preconditioner achieves a better convergence than a conventional one in eddy-current analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.