Abstract

This work is aiming to show the advantage of using the Lie algebraic decomposition technique to solvefor Schrödinger’s wave equation for a quantum model, compared with the direct method of solution. The advantageis a two-fold: one is to derive general form of solution, and, two is relatively manageable to deal with the case oftime-dependent system Hamiltonian. Specifically, we consider the model of 2-level optical atom and solve for thecorresponding Schrödinger’s wave equation using the Lie algebraic decomposition technique. The obtained formof solution for the wave function is used to examine computationally the atomic localization in the coordinate space.For comparison, the direct method of solution of the wave function is analysed in order to show its complicationwhen dealing with time-dependent Hamiltonian.The possibility of using the Lie algebraic method for a qubit model(a driven quantum dot model) is briery discussed, if Schrödinger’s wave function is to be examined for the qubitlocalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.