Abstract

— We prove an algebraicity criterion for leaves of algebraic foliations defined over number fields. Namely, consider a number field K embedded in C, a smooth algebraic variety X over K, equipped with a K-rational point P, and F an algebraic subbundle of the its tangent bundle TX, defined over K. Assume moreover that the vector bundle F is involutive, i.e., closed unter Lie bracket. Then it defines an holomorphic foliation of the analytic mainfold X(C), and one may consider its leaf ℱ through P. We prove that ℱ is algebraic if the following local conditions are satisfied: i) For almost every prime ideal p of the ring of integers 𝒪K of the number field K, the p-curvature of the reduction modulo p of the involutive bundle F vanishes at P (where p denotes the characteristic of the residue field 𝒪K / p ). ii) The analytic manifold ℱ satisfies the Liouville property; this arises, in particular, if ℱ is the image by some holomorphic map of the complement in a complex algebraic variety of a closed analytic subset. This algebraicity criterion unifies and extends various results of D. V. and G. V. Chudnovsky, Andre, and Graftieaux, and also admits new consequences. For instance, applied to an algebraic group G over K, it shows that a K-Lie subalgebra h of Lie G is algebraic if and only if for almost every non-zero prime ideal p of 𝒪K , of residue characteristic p, the reduction modulo p of h is a restricted Lie subalgebra of the reduction modulo p of Lie G (i.e., is stable under p-th powers). This solves a conjecture of Ekedahl and Shepherd-Barron. The algebraicity criterion above follows from a more basic algebraicity criterion concerning smooth formal germs in algebraic varieties over number fields. The proof of the latter relies on “transcendence techniques”, recast in a modern geometric version involving elementary concepts of Arakelov geometry, and on some analytic estimates, related to the First Main Theorem of higher-dimensional Nevanlinna theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call