Abstract

We define a variant of intersection space theory that applies to many compact complex and real analytic spaces [Formula: see text], including all complex projective varieties; this is a significant extension to a theory which has so far only been shown to apply to a particular subclass of spaces with smooth singular sets. We verify existence of these so-called algebraic intersection spaces and show that they are the (reduced) chain complexes of known topological intersection spaces in the case that both exist. We next analyze “local duality obstructions,” which we can choose to vanish, and verify that algebraic intersection spaces satisfy duality in the absence of these obstructions. We conclude by defining an untwisted algebraic intersection space pairing, whose signature is equal to the Novikov signature of the complement in [Formula: see text] of a tubular neighborhood of the singular set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.