Abstract
The sixteen families of q-series containing the Ramanujan functions were listed by I.J. Zucker (SIAM J. Math. Anal. 10:192–206, 1979), which are generated from the Fourier series expansions of the Jacobian elliptic functions or some of their squares. This paper discusses algebraic independence properties for these q-series. We determine all the sets of q-series such that, at each algebraic point, the values of the q-series in the set are algebraically independent over ℚ. We also present several algebraic relations over ℚ for two or three of these q-series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.