Abstract

We study the diagonalization problem of certain Hofstadter-type models through the algebraic Bethe ansatz equation by the algebraic geometry method. When the spectral variables lie on a rational curve, we obtain the complete and explicit solutions for models with a rational magnetic flux, and discuss the Bethe equation of their thermodynamic flux limit. The algebraic geometry properties of the Bethe equation on high genus algebraic curves are investigated in accordance with physical considerations of the Hofstadter model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.