Abstract

This study proposes an algebraic distributed source localisation algorithm that combines time difference of arrival (TDOA) and angle of arrival (AOA) measurements. The proposed algorithm uses AOAs to remove the unknown parameters in TDOA equations caused by the specially distributed structure. Then, the observation equations are transformed into a set of pseudo-linear equations and apply linear weighted least square to obtain the source position. The application of weighting matrix can lead to an approximate maximum likelihood estimator and produce a substantial improvement in source localisation accuracy. Both theoretical analysis and simulation results indicate the efficiency of the proposed algorithm and its performance can achieve the Cramer–Rao lower bound at a moderate noise level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.