Abstract

Spin-orbit coupling (SOC) effects are of great importance for understanding photochemical and -physical relaxation processes. Mean-field approaches have been shown to allow for the efficient calculation of SOC elements without significantly comprising accuracy. We have combined an atomic mean-field approach with the algebraic diagrammatic construction scheme for the polarization propagator, an ab initio excited state method based on perturbation theory. In addition to describing the details of our implementation, we show results from test calculations on the organic molecules thiophene and 1,2-dithiin and compare our computed SOC values at ADC level to known literature values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.