Abstract

In this study, an efficient and fast algebraic decoding algorithm (ADA) for the binary systematic quadratic residue (QR) code of length 73 with the reducible generator polynomial to correct up to six errors is proposed. The S(I, J) matrix method given by He et al. (2001) is utilised to compute the unknown syndromes S5. A technique called swap base is proposed to correct the weight-4 error patterns. To correct the weight-5 error patterns, the new error-locator polynomials for decoding the five errors are derived. Finally, the modified shift-search algorithm (SSA) developed by Lin et al. (2010) is applied to correct the weight-6 error patterns. Moreover, the computations of all syndromes are achieved in a small finite field. Simulation results show that the proposed ADA is practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.