Abstract

Motivated by the Beauville–Voisin conjecture about Chow rings of powers of K3 surfaces, we consider a similar conjecture for Chow rings of powers of EPW sextics. We prove part of this conjecture for the very special EPW sextic studied by Donten-Bury et al. We also prove some other results concerning the Chow groups of this very special EPW sextic, and of certain related hyperkähler fourfolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.